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Goal of this Lecture Mini-Series

Accessible to broad audience.
— Assume basic knowledge of multi-dimensional calculus.

Give overview of practical optimization algorithms for nonlinear
constrained optimization.

— Includes theoretical characterization of optima.

Concentrate on intuition of algorithms and theoretical concepts.
— No complicated proofs.
— Some “cheating” (ignoring some subtleties).

90 min reserved, but roughly targeting 75 min.

e | will make slides available after the lectures.
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Outline

Last week:
¢ Optimality conditions for unconstrained optimization.
¢ Three basic unconstrained optimization algorithms.

Today:
¢ Line search and trust region methods.
e Optimality conditions for constrained optimization.
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Summary of Last Lecture

i 0

Look for local minima.
Main theoretical tool: Taylor expansions.

f(xk + d) = f(x) + Vi(xk)Td + 3d"V2f(x)d

Necessary optimality conditions:

Vf(x*) = 0 and V2f(x*) is positive semi-definite

Sufficient optimality conditions:

Vf(x*) = 0 and V2f(x*) is positive definite
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Unified Algorithm Framework

e Quadratic model of objective at iterate x:

Ok (xk + d) = f(xi) + VI(x)"d + 1d" Bed

e Different choices of By result in different method.

Given: Stopping tolerance e > 0.

1: Choose xp and set k <+ 0.

2: while ||Vf(xk)|| > ¢ do

3 Compute or update By.

4. Minimize gx(xk + d) to get step dk.  (dk = —B, ' VF(xx))
5 Take step xx.1 = Xk + di.

6 Increase iteration counter k < k + 1.

7: end while
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Comparison of Steps (1)

Gradient method:

e B, = %I

® dy = —aVf(xk).

e Global linear convergence rate for appropriate step size a.
¢ Does not require second derivatives.

Newton’s method:

* By = V2f(xy)

¢ |ocal quadratic convergence rate.
e Requires computation of V2f(x).

* Needs special attention when V2f(xy) is indefinite.
— Inthat case, gk(xx + d) does not have a minimizer.
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Comparison of Steps (2)

Quasi-Newton methods:
® B, is Hessian approximation.
e Updated in each iteration by a formula (e.g., BFGS).

¢ | ocal super-linear convergence rate (in theory under somewhat
strong assumptions, but often in practice).

¢ Does not require second derivatives.
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Our Algorithm So Far

Given: Stopping tolerance ¢ > 0.
1: Choose xp and set k < 0.
2: while ||Vf(xk)|| > ¢ do
3: Compute or update By.
4: Minimize qx(xx + d) to get step d.

6: Take step xx.1 = X + di.
7: Increase iteration counter k + k + 1.
8: end while

Concerns:
e Sometimes, this basic algorithm fails to converge.
¢ The iterates might cycle or diverge.
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Our Algorithm So Far

Given: Stopping tolerance ¢ > 0.

1: Choose xp and set k < 0.

2: while ||Vf(xk)|| > ¢ do

3 Compute or update By.

4 Minimize qx(xx + d) to get step d.
5: Choose step size ay > 0.

6 Take step Xy 1 = Xk + o - dk.

7 Increase iteration counter k < k + 1.
8: end while

Concerns:

e Sometimes, this basic algorithm fails to converge.
¢ The iterates might cycle or diverge.

® One remedy: Take a shorter step.
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Line Search

‘Xk+1 = Xk + ak - dk

Introduce a step size ay > 0.
Choose «ay so that objective is improved:

‘f(Xk—f—O«k' dk) < f(Xk)‘

Called line search because it looks for a new iterate along the line

{Xk +a-dx: a>0}

We could seek minimizer

min f(Xx + o - dk)
a>0

but that is usually very computationally expensive.
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Backtracking Line Search

Given: Stopping tolerance ¢ > 0.

1: Choose xy and set k < 0.

2: while ||Vf(xk)|| > ¢ do

3 Compute or update By.

4 Minimize qx(xx + d) to get step dk.
5: Set ay + 1.

6: while f(xx + ay - dk) > f(xx) do
7: Set ay + %Oz,k.

8 end while

9 Take step Xx11 = Xk + a - di.

0: Increase iteration counter k « k + 1.
1: end while

1 .
1
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Descent Direction

] (X + v - die) < F(xk) \

* To make sure such o, > 0 exists, dx should be descent direction.

f(Xk + oy - dk) < f(Xk)
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Descent Direction

] (X + v - die) < F(xk) \

* To make sure such o, > 0 exists, dx should be descent direction.

F(Xk 4 ax - di) = F(xk) + axVE(x) T die < F(xk)

e So, we need

V(xc) dx < 0.

e Then, for sufficiently small oy, the step is accepted.
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Ensuring Descent Directions

e How can we guarantee that dy is a descent direction?

e Recall step calculation: Solve | B dy = —Vf(x¥)|.

e We want
0 < —Vf(xx) dx = df Bk

e So, di is a descent direction if By is positive definite.
— This is also the condition that ensures gx has minimizer!

¢ We would not think about this if we just apply Newton’s method

to “V(x) = 0".
Gradient method: By = 1/ v
BFGS method: By positive definite
Newton’s method: By = V2f(xk) ?
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Descent Directions for Newton’s Method

e If fis not convex, Bx = V2f(xx) might not be positive definite.
¢ |n that case, we need to modify By.

¢ One option: Use

Bx = V2f(xk) + A1

with some regularization parameter A > 0.
¢ |f X sufficiently large, By is positive definite.

e Could compute most negative eigenvalue of By, but that is costly.
e Cheap strategy: Try increasingly larger values of .
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Simple Strategy to Compute Regularization

Parameter )\

1: Set A «+ 0.
2: repeat

Given: x, and parameters Agman > 0, x > 1.

3: Set By (*VQf(Xk)+)\- l.
4: Try to compute Cholesky factorization

Bi = L] Ly

if successful then

else

end if

5
6
7:
8:
9
0

1

Solve L[ v = —V{(x) and Lidk = v to get dk.
Set A < max{Agman, £ - A\}

: until di has been computed

(Lg lower triangular)
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Need Sufficient Decrease

Xo Xo X3 X{

¢ In our algorithm, we asked for “f(xx + ay - di) < f(xk).”
¢ However, that is not enough to guarantee convergence.
* Need to make sure oy provides sufficient decrease in f.
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Armijo Condition

P(a)=f (xx + apy)

acceptable | acceptable
1 I 1

* Relaxed tangent: /() = f(xx) + a - nVF(xx) " dk
¢ Armijo condition:

f(Xk + o) < F(Xi) + o - nV F(xi) T dli

¢ With this, can prove global convergence under mild assumptions:
— “Every limit point of {x} is a stationary point.”
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Alternative Strategy: Trust Region

Qk(xk + d) = F(xk) + VFi(xk) d + 3dTV2f(x)d

This is a local model of f(x) around x.
We should “trust” it only for a limited range.

Compute step from trust-region subproblem:

min - f(x) + Vixk) d+ 3dTV2f(x)d
c n

Trust-region radius A, > 0 expresses how far we trust the model.
Ay is updated from iteration to iteration.
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Alternative Strategy: Trust Region

Qk(xk + d) = F(xk) + VFi(xk) d + 3dTV2f(x)d

This is a local model of f(x) around x.
We should “trust” it only for a limited range.

Compute step from trust-region subproblem:

min - f(x) + Vixk) d+ 3dTV2f(x)d
c n

s.t. HdkH < Ay

Trust-region radius A, > 0 expresses how far we trust the model.
Ay is updated from iteration to iteration.
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Trust-Region Method Example Problem

-3 2 -1 0 1 2 3

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 1

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 2

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 3

-
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+

(From Frank Vanden Berghen'’s website)
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Trust-Region Method Example Iteration 4

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 5

-:‘3 2 -1 0 1 2 3

(From Frank Vanden Berghen’s website)
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Trust-Region Method Example Iteration 6

(From Frank Vanden Berghen’s website)
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Trust-Region Update

® |dea:

— Increase trust region if qx(xx + dk) agrees well with f(xx + dk).
— Decrease trust region if gx(xx + di) is very different from f(xx + d).

e How can we measure quality of model agreement?

— Predicted reduction: pred, = gi(Xx) — gk(Xx + dk) > 0
— Actual reduction:  aredy = f(xx) — f(xx + dk)

_ - _aredg
Agreement ratio: Pk = pred

Ideally: py ~ 1.

Good agreement: px > 1)g004 With 79004 € (0, 1).

Bad agreement:  px < 7jpag With 1)paq € (0, 7g00d]-
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A Basic Trust-Region Algorithm

Given: Parameter € > 0, 0 < 1y < 1good < 1.
1: Choose xp € R", Ay > 0. Set k < 0.
2: while |Vf(xk)|| > ¢ do
3 Compute or update B.
4: Solve trust-region subproblem with radius Ay to get d.
5. Setpredy = gk(xk) — gk(xk + dk), aredy = f(xx) — f(xk + dk).
6: Compute px = aredy/predy.
7 if Pk = Ngood then
8: Set Xk+1 = Xk + dyx and Ay, 1 = 2.
9: else if p; > 1, then

10: Set X1 = Xk + dg and Ay 4 = Ayg.
11: else

12: Set Xk+1 = Xk and Agi1 = %Ak-

13: end if

14: Increase k + k + 1.

15: end while
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Trust-Region Algorithm Discussion

e Handles indefinite Bx = V2f(xx) in a natural manner.

e We have p, — 1 as Ay — 0.
— So, a new iterate will eventually be accepted.

¢ The trial points lie on a curved path, not a line.
e As A, — 0, trial step approaches gradient direction.

e Convergence can still be achieved if trust-region subproblem is
solved inaccurately, e.g., for large problems.

e Can prove global convergence under mild assumptions:
— “Every limit point of {x} is a stationary point.”
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Path of Trust Region Trial Points

contours of m
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Unconstrained Optimization Recap

e We saw three types of step computations di:

— Gradient method
— Newton’s method
— Quasi-Newton methods

e We saw two strategies to guarantee global convergence:

— Line search
— Trust region

e For large-scale problems:

— Use sparse matrix factorization techniques.
— Use iterative linear solvers, e.g., conjugate gradients.
— Limited-memory BFGS (L-BFGS).
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Constrained Nonlinear Optimization Problems

min f(x) f:RT—R
s.t. ce(x) =0 ce:R" — R
c(x)<0 ¢ :R"— R"

¢ We assume that all functions are twice continuously
differentiable.

¢ Apoint x € R" satisfying all constraints, i.e.,
ce(x)=0
C/(X) <0
is called feasible.

e Let Q2 C R” be the set of all feasible point.
e Often called “Nonlinear Program” (NLP).
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Types of Minimizers

i 0

(NLP)

e Apoint x* € R” is a global minimizer of (NLP) if f(x) > f(x*) for
all x e R".

e Apoint x* € R” is a local minimizer of (NLP), if f(x) > f(x*) for
all x € N.(x*) for some e > 0.
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Types of Minimizers

i, )

st.ce(x)=0 (NLP)
c(x) <0

e A point x* € Q is a global minimizer of (NLP) if f(x) > f(x*) for
all x € Q.

e A point x* € Q is a local minimizer of (NLP), if f(x) > f(x*) for
all x € N.(x*) U for some € > 0.

¢ Again, the methods we will discuss try to find local minimizers.
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Special Case: Convex Problems

Definition (Convex Set)
A set Siis convex, if for all x, y € Sand all A € [0, 1] we have

A-x+(1-XN)-yeS
Proposition
If f is convex and Q) is convex, then every local minimizer is a global
minimizer.
Proposition
If all ce are affine and all ¢, are convex, then 2 is convex.

Examples:

¢ Linear Programs, Second-Order Cone Programs, Semi-Definite
Programs.
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Optimality Conditions: Equality Constraints

min
XERN
S.t.

f(x)
ce(x)=0

Los Alamos National Laboratory
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min
XERN
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f(x)
ce(x)=0

Los Alamos National Laboratory

UNCLASSIFIED

Andreas Wéchter | 33



UNCLASSIFIED

Optimality Conditions: Equality Constraints

min  f(x) \f ;
XERN X[
s.t. ce(x)=0 Vep(x Nz

7 f —-Vf cp(x

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.
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Optimality Conditions: Equality Constraints
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V f(x) must be zero.
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V f(x) must be zero.

e For this, —V{(x*) must be linear combination of constraint
gradient:

|-VI(x") =Vee(x') Ae|  Ae€R
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Optimality Conditions: Equality Constraints

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V{(x) must be zero.

e For this, —Vf(x*) must be linear combination of constraint
gradients:

—VI(x*) = Y15 Ve j(x) Mg Ag € R
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Optimality Conditions: Equality Constraints

o 1

s.t. ce(x)=0

¢ Moving along projection of —V f(x) onto tangent space of
feasible set decreases objective.

¢ At local minimum, projection of —V{(x) must be zero.

e For this, —Vf(x*) must be linear combination of constraint
gradients:

—VI(x*) = Z 1VCEJ( )/\El Vee(x™) Ae A € RE

¢ Notation: Columns of Vce(x*) are the constraints gradients.
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Optimality Conditions: Inequality Constraints

w1
s.t. ce(x)=0
c(x) <0
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Optimality Conditions: Inequality Constraints

w1
s.t. ce(x)=0

c(x) <0 S
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.
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Optimality Conditions: Inequality Constraints

w1
s.t. ce(x)=0
c(x)<0 7
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.

e Same relationship as before:

[—Vi(x") = Vee(x') - Ag | XeeR
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Optimality Conditions: Inequality Constraints

w1

s.t. ce(x)=0

c(x) <0 S
LVCI

¢ First local minimum:
— Inequality constraint is inactive (not binding), it might as well not be
there.

e Same relationship as before:

|—VA(x") = Vee(x') - Ae + Ve (x) - M| Ae€R, A =0
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Optimality Conditions: Inequality Constraints

i, 1)
s.t. ce(x)

=0
C/(X) <0
Ve (z*) F«‘Vf(zx)

e Second local minimum:
— Inequality constraint is active.
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Optimality Conditions: Inequality Constraints

Ver(z*) FQ‘V](OX)

e Second local minimum:
— Inequality constraint is active.

e Projection of —Vf(x*) onto tangent space of “cz(x) = 0" points
into direction that violates “c;(x) < 0”.
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Optimality Conditions: Inequality Constraints

Ve (z*) FQ‘V](([*)

e Second local minimum:
— Inequality constraint is active.

e Projection of —Vf(x*) onto tangent space of “cz(x) = 0" points
into direction that violates “c;(x) < 0”.

’*Vf(X*)ZVCE(X*)-)\E-{-VC/(X*)-)\/‘ AEER, >0
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Optimality Conditions: Inequality Constraints

in f
o '™
s.t. ce(x)=0
c(x)<0

¢ Another point where inequality is active.
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Optimality Conditions: Inequality Constraints

in f
i 7

S.t. CE(X)

=0 “E\T) I
c(x) <0 \ e
Ver () lw‘

¢ Another point where inequality is active.
¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.
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Optimality Conditions: Inequality Constraints

¢ Another point where inequality is active.

¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.

— Can move into this direction and improve objective.

Los Alamos National Laboratory UNCLASSIFIED

Andreas Wachter | 36



UNCLASSIFIED

Optimality Conditions: Inequality Constraints

Ver(x)

¢ Another point where inequality is active.

¢ Projection of —Vf(x) onto tangent space of “cz(x) = 0" points
into direction that satisfies “c;(x) < 0”.

— Can move into this direction and improve objective.

‘*Vf(X):VCE(X)~>\E+VC/(X)-)\/‘ AEER, A\ <O
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Summary of Conditions

e Projection of —Vf(x*) onto the right tangent space must be zero:

’ VI(x*)+ Vee(x* ) e + Ve (x* )\ = O‘

for some Lagrangian multipliers A\r € R and A\, € R,
— There is no direction that decreases objective and stays feasible.

¢ Releasing active inequality does not make it possible to improve

objective:

¢ Only active constraints can contribute to the (local) optimality
conditions:

cj(x*)-Aj;=0] forallj=1,....n

— If constraint is not active, multiplier must be zero.
— This is called complementarity condition.
— “Atleast one of ¢;;(x*) and A}, has to be zero.”
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